

Creative concrete constructions by the use of textiles as flexible formwork or as functional framework liner


Outline

- Introduction & partners
- Goal of the project
- Overview of the state-of-the-art
- Potential benefits
- Textile requirements & selection
- Test platform: concrete slab
- Test platform: column
- Column+
- Textures
- Case study 1: Cone
- Case study 2: Hypar
- Conclusion & outlook
- Acknowledgements

- Current trends in architecture
 - rounded, 'organic' shapes
 - > textile tensile structures

Introduction

BUT for such concrete constructions, classic formwork is very expensive!

 \Rightarrow Could textiles be used as formwork or formwork liner?

⇒ BBRI (Building), Centexbel (Textile) and VUB-ARCH (Architecture) set up a project

- \Rightarrow with subsidies from the Flemish Community through IWT
- \Rightarrow started in september 2006

BBRI - Belgian Building Research Institute

Status

Private research institute founded in 1960 by the National Federation of Belgian Building Contractors under the application of the « De Groote » act

Members

Statutory Members: more than 74.500 Belgian building contractors (general contractors, carpenters, plasterers, glaziers, plumbers, roofers, tilers, ...)

Staff

220 high-school graduates and motivated collaborators from a wide range of educational disciplines, working in multidisciplinary teams (petrographs, surveyors, architects, engineers in construction, material science, mechanics, mining, ...)

Belgian Building Research Institute

3 Missions

- Collective Research
- Information Transfer
- Development & Innovation

To the benefit of members and:

- Government
- Architects
- Experts
- Material Producers
- Financial partners

2 Energienced in exe placeases and the second se

Centexbel: who we are & what we do

Textile research centre

- > non-profit
- > membership organisation
 - ~900 textile producers
 - ~100 associated members
 - collaboration with 3rd parties
- ~120 (of which ~50% scientists)
- > 3 offices in Belgium's regions
 - Brussels Ghent Verviers

Markets

- Interior textiles
- > Apparel & accessories
- > Technical textiles
- Environment & Energy
- Safety, Security & Health

- Research on textile products:
 - > Basic, applied, pre-standard
 - > EU, national, regional, private
 - > Domains:
 - Processes
 - Materials
 - Safety, security & health
 - Environment & energy
- Testing, certification & labelling
- <u>Services</u>
- GUT DE WOOLMARK
- > Patents,
- Standardization,
- Consultancy,
- ➤ Training,...

Centexbel: what we have

Officially accredited laboratories

physical (incl. electrostatic) microbiological

chemical (incl. permeation, polymer rheology,...) burning behaviour Semi-industrial & lab-scale platforms

knitting

coating

finishing (incl. plasma) extrusion (incl. bico)

VUB

- Vrije Universiteit Brussel
 - ~9000 students, ~2500 staff
 - > 8 faculties including Engineering and Sciences
 - > Research budget 62M € in 2005
- ARCH: Department of Architectural Engineering
 - ~25 staff members
 - > Head: Prof. Mollaert
 - » æ-lab
 - Renovation & Re-use
 - Lightweight Structures =>Tensile Surface Structures
 - 4D Design

Goal of the project

- Gain knowledge on the use of textiles
 - > as formwork for rounded, organic concrete structures
 - > as formwork liner for functionalizing the concrete surface (i.e. texture and structure)
 by studying several materials and concepts
- Investigate the practical feasibility and limitations by modelling and developing prototypes

State-of-the-art (1)

Simple products are commercially available
 Fab-form Industries (www.fab-form.com)

Fastfoot[®], Fastbag[®], Fasttube[™]

Techtextil Symposium, Buildtech TT.2.2, 12/06/2007

.9ml

State-of-the-art (2)

Simple products are commercially available

- > Fab-form Industries (www.fab-form.com)
 - Fastfoot[®], Fastbag[®], Fasttube[™]
- > Hydrotex[®] (<u>www.hydrotex.com</u>)
- > Bonar TM Concrete Matrasses (<u>www.bonartf.com</u>)

State-of-the-art (3)

Prof. M. West (University of Manitoba, Canada) Columns

State-of-the-art (4)

Prof. M. West (University of Manitoba, Canada)

> Panels & 'Bulge wall'

State-of-the-art (5)

Prof. M. West (University of Manitoba, Canada)

> Beams & trusses

State-of-the-art (6)

Ir. A. Pronk (TU Eindhoven, the Netherlands)

Techtextil Symposium, Buildtech TT.2.2, 12/06/2007

Potential benefits of fabric formwork

- No classic formwork required => cheap
- Less weather dependent (cfr. cardboard)
- Large structures feasible (e.g. columns)
- Easy to install
- Complex rounded structures feasible
- Easy storage (compact)

Techtextil Symposium, Buildtech TT.2.2, 12/06/2007

Outline

- Introduction & partners
- Goal of the project
- Overview of the state-of-the-art
- Potential benefits
- Textile requirements & selection
- Test platform: concrete slab
- Test platform: column
- Column+
- Texture
- Case study 1: Cone
- Case study 2: Hypar
- Conclusion & outlook
- Acknowledgements

Textile requirements & selection

Main requirements

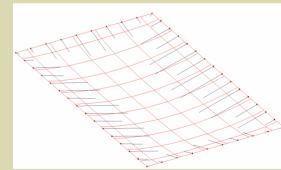
>High strength @ low elongation => knitted textiles not selected >Good demoulding & re-use

>Low cost

>Good alkali resistance (concrete has a pH ~11-13)

◆Material selection & testing | PP NW | PE(/twaron) woven | PVC coated woven

char selection & testing		PP NW	PE(/twaron) woven	PVC coated woven
	Mech. strength (kN/m)	45	100(-600*)	40-150
	@ elongation	@ 40-65%	@ 10-20%	@ 20-35%
	Bursting strength (GPa)	Not tested	Not tested**	>2 - 4.5***
	Tearing strenght (N)	Not tested	225-25	1000-160
	Permeable	Yes	Yes	No
	Demoulding	Bad	Moderate	Good
	Re-usability	Bad	Moderate	Good
	Price (€/m²)	0.2	2(-6)	3-5
	Alkali resistance	Good	Good	Good


* For MD; ** Materials too thick & rough to be tested; *** For light materials, heavy materials (>1kg/m²) could not be tested

Concept: horizontally suspended, unsupported textile

to correlate deformation, load & textile properties

- Modelling & tests
 - >15cm concrete load, 100kN/m stiffness, 10N/m pretension
 - => Model predicts sagging by 6cm
 - => corresponded quite well with the experiments

◆Conclusion:

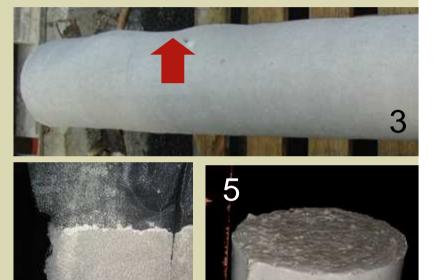
In flat structures, high tension & deformation quickly occur
 Material stiffness has a bigger impact than prestressing
 Horizontal slab is not a good test platform

Test platform: column (1)

• Basic approach: clamp textile in wood frame

Test platform: column (2)

• Similar approach:


Test platform: column (2)

• Similar approach:

- Conclusions basic approaches:
 - 1. Light materials are strong enough
 - 2. Diameter can be easily adjusted
 - 3. More uniform tension required
 - 4. Wovens bleed cement grout => bad demoulding & re-use
 - 5. Edge remains at clamping site

Test platform: column (3)

'Advanced' approach: ready-made columns

- By welding:
 - Strength ~ textile
 - Only for coated materials
 - Single use
 - Cheap

By sewing:

- Strength ~ ½ textile
- Single use
- Cheap

Conclusion:

> Works well but seam/edge remains visible in concrete

Test platform: column (4)

'Advanced' approach: ready-made columns With (watertight) zip-fastener:

- up to 28kN/m (= column 10m x 0.2m Ø)
- Re-usable
- Expensive

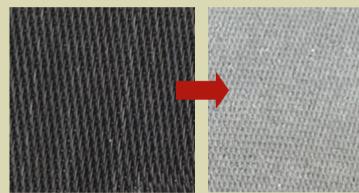
With velcro:

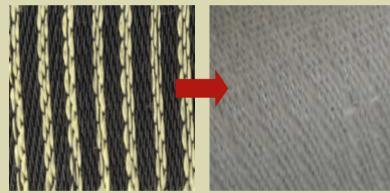
- **Re-usable**
- Variable diameter
- Expensive
- up to 25N/cm²
- Conclusion:
 - > Zip: protective flap required
 - > Velcro: stronger/wider velcro required
 - => Further testing necessary

Column with 'chalice'-shaped head Wood clamp: sagging

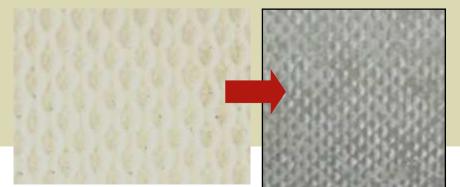
Column with 'chalice'-shaped head

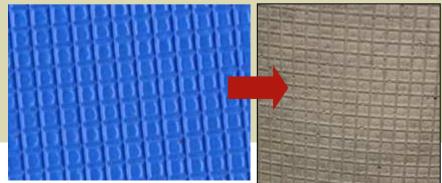
>Wood clamp: sagging
>Ready-made formwork


•


Textures (1)

27


Non-wovens: Rough, fluffy finish


Wovens: good surface finish, typical woven textures

• Coated fabrics: excellent finish, wide variety of (pronounced) textures available

Textures (2)

Wallpaper as liner

Conclusions:

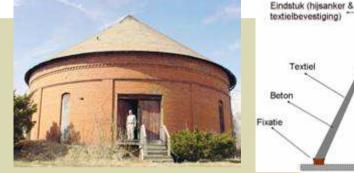
- > High quality transfer of texture
- Many interesting and aesthetic textures available
- Concrete surface porosity & durability to be assessed

Case studies

- Shapes based on input from the construction sector
- Concepts: cone & hypar

◆ <u>BUT</u>

- > Difficult to pour concrete directly onto textile because
 - Concrete flows
 - Bad adhesion, especially on coated fabrics
 - => use wovens (or non-wovens) as liner, special additives, viscous concrete, shotcrete,...
- > Easy of use in situ? => to be checked
- Classic reinforcement difficult to integrate
- => use small-scale prototypes
- => novel reinforcement concepts required

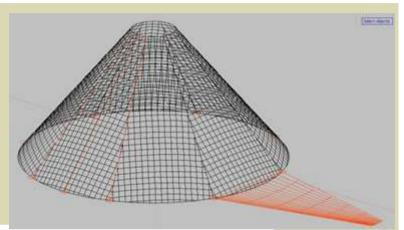


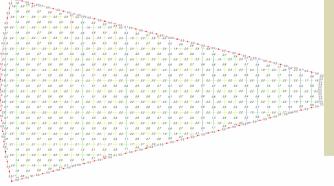
Case study 1a: cone

Concept:

- Cone: height 2.7m, radius 2.25m/0.225m (bottom/top)
- Pour concrete directly on a cone-shape textile
- Modelling
 - Load: 5 cm concrete
 - Tension concentrates near top
 - Increasing prestress reduces deformation
 - > Textiles with high stiffness reduce deformation
 - =>3cm deformation for 1000kN/m stiffness & 0.4kN prestress
 - =>Tension is in the order of maximum strength of the selected textiles!

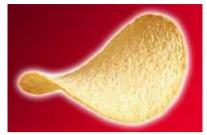
Textiel

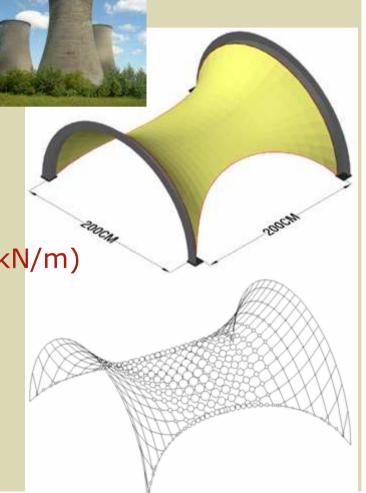

=> Use cone section (wedge) to reduce tension & deformation



Case study 1b: cone wedge

- Concept:
 - > 1/8th of cone placed horizontally
- Modelling
 - > Load: 5 cm concrete
 - > Prestressing both directions
 - ⇒ Load increases tension slightly
 - ⇒ Only 1cm deformation
 - ⇒ Hardly double-curved
 - \Rightarrow High stiffness textile required
- Currently:
 - > Building experimental setup
 - Manufacturing of the textile formwork




© DJ, Centexbel

Case study 2: hypar/saddle

- Concept
 - > 2 arch frames, 2x2m, height 1m
 - Strongly double-curved
- Modelling
 - > Load 5cm concrete
 - > Uniaxial pretensioning
 - \Rightarrow High stiffness textile required (~1000kN/m)
 - ⇒ 9cm deformation @ 1kN/m prestress,
 1cm deformation @ 2kN/m prestress
- Currently:
 - > Building experimental setup
 - Manufacturing of the textile formwork

Conclusion & outlook

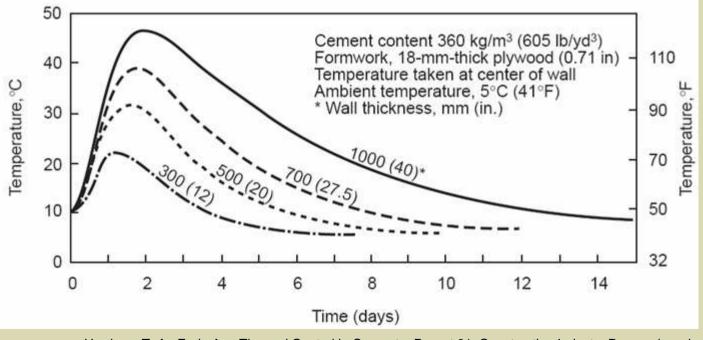
- General conclusions on fabric formwork:
 - State-of-the-art is still primitive and mostly academic
 - Many potential advantages
 - > Shown promising experiments & prototypes
 - > Obtained interesting and unique textures
 - > Investigated feasibility of 2 exemplary case studies

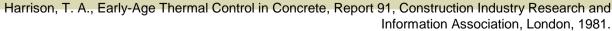
Outlook

- > Textile testing: creep, biaxial mechanical strength,...
- Manufacturing more ready-made formworks
 - Evaluate velcro/zip-fastening
 - Try more complex shapes
- > Experimental tests on the case studies

Acknowledgements

- Visit us in hall 4.1 at stand E52
- Other lectures by Centexbel
 - > Dr. I. De Witte: lecture AX.4.2 "Sol-gel durable nano-metric coatingq for hydrophilic/hydrophobic surface modification" on Wed. 13/06 at 9h25
 - Ing. F. Pirotte: lecture AX.7.8 "OFSETH: Optical Fibre Sensors Embedded in Technical Textiles for Healthcare" on Thu. 14/06 at 12h15


Acknowledgements


- > IWT for financial support
- Sioen Industries NV (Hall 3.0 Stand D45)
- Bonar Technical Fabrics NV (Hall 3.1 Stand G11)
- > Axel Troch bvba
- > The Nomad Concept bvba
- You for your kind attention

Thermal influence

> Temperatures due to the heat of hydration of concrete are within the typical operational temperature range (-30° to +70°) of textiles

